KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN SUPPORT VECTOR MACHINE

Authors

  • Eka Utaminingsih Universitas Bumi Persada
  • Arista Ardilla Universitas Bumi Persada

Keywords:

Support Vector Machine, Wavelet Transform, Citra Medis, Pengolahan Citra Digital, Identifikasi Penyakit Kulit

Abstract

Penyakit kulit adalah kelainan pada kulit yang mempengaruhi kesehatan kulit, seperti
ruam, peradangan, rasa gatal, atau perubahan kulit lainnya. Penyakit kulit dapat
disebabkan oleh berbagai hal, termasuk faktor kebersihan diri, paparan zat berbahaya di
lingkungan, dan infeksi. Perkembangan penyakit kulit yang beragam saat ini, baik dalam
aplikasi bentuk, warna, dan tekstur/motif menimbulkan ide peneliti untuk menciptakan
suatu cara guna mempermudah pengenalan jenis penyakit kulit pada citra, salah satunya
melalui metode klasifikasi. Klasifikasi citra bermanfaat untuk mempercepat proses
pencarian citra penyakit kulit. Pada penelitian ini klasifikasi citra dilakukan
menggunakan Support Vector Machine (SVM). Support Vector Machine dapat
mengidentifikasi sekitar 60% ruam merah dan 30% ruam hitam pada kelainan kulit.
Meskipun demikian, penelitian menunjukkan masih terdapat ruang untuk pengembangan
algoritme yang lebih kompleks dan akurat.

References

Baker, M., & Fisher, R. (2023).

"Advanced

Image Retrieval

Systems in Medicine." Medical

Technology Innovation, 11(4),

234-246.

Bennett, K., & Green, M. (2022). "AI

Integration in Medical Image

Classification."

Journal

of

Healthcare Computing, 21(4),

478-490.

Brown, M., & Davis, K. (2023).

"Categorization

of

Skin

Conditions Using Digital Images."

Dermatology Informatics, 9(4),

178-190.

Cooper, S., & Reed, A. (2022). "Progress

in Medical Image Classification."

Healthcare Informatics Review,

28(2), 167-179.

Chen, X., et al. (2023). "Dataset

Construction for Skin Disease

Classification." Medical Image

Analysis, 28(4), 112-124.

Garcia, M., & Rodriguez, C. (2022).

"Color

Structure

Descriptor

Applications in Medical Imaging."

Pattern Recognition in Medicine,

20(4), 345-358.

Harris, B., & Clark, E. (2022). "Color

Variation Challenges in Skin

Disease Classification." Journal of

Medical Imaging, 17(4), 289-301.

Lee, J., & Kim, S. (2022). "Image

Preprocessing

Techniques

Medical

Image

in

Analysis."

Computer

Methods

in

Biomedicine, 18(1), 45-57.

Nguyen, H. T., et al. (2023). "Advanced

Machine Learning Approaches for

Dermatological Image Analysis."

International Journal of Computer

Assisted Radiology and Surgery,

18(3), 457-470.

Murphy, K., & Evans, L. (2023).

"Limitations of Current Image

Classification

Methods."

Healthcare Technology Review,

19(2), 112-124.

Park, S., & Lee, H. (2023). "Performance

Analysis

of

Classification

Skin

Disease

Systems."

Healthcare Computing, 16(3),

223-235.

Smith, A. B., & Johnson, R. (2022).

"Evaluation Methods for Skin

Disease Image Classification."

ournal

of

Medical

Image

Processing, 15(3), 234-245.

Taylor, R., & Moore, S. (2023). "Factors

Affecting

Medical

Classification."

Image

Medical

Computing Systems, 22(1), 78-90.

Thompson, E., & Anderson, P. (2023).

"Content-Based Image Retrieval in

Dermatology." Medical Image

Processing Review, 14(2), 67-79.

Wang, S., et al. (2022). "Automated Skin

Lesion

Classification

Using

Convolutional Neural Networks

and Support Vector Machines."

Computers

in

Biology

and

Medicine, 145, 105468.

Wang, L., & He, D. C. (2021).

"Classification of Skin Disease

Images Using Color Structure

Descriptor." IEEE Transactions on

Wilson, R., et al. (2022). "Visual

Analysis

of

Skin

Disease

Categories." Journal of Clinical

Dermatology,

25(3),

412

425.Engineering Journal, 30(2),

156-168.

Zhang, L., et al. (2020). "Deep Learning-

Based Skin Disease Classification:

A Comprehensive Review." IEEE

Transactions on Medical Imaging,

39(8), 2551-2563.

Zhang, Y., & Liu, H. (2021). "Online

Medical Image Catalogs: A

Systematic

Review."

Digital

Healthcare Journal, 12(2), 89-101.

Published

2025-05-08