KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN SUPPORT VECTOR MACHINE
Keywords:
Support Vector Machine, Wavelet Transform, Citra Medis, Pengolahan Citra Digital, Identifikasi Penyakit KulitAbstract
Penyakit kulit adalah kelainan pada kulit yang mempengaruhi kesehatan kulit, seperti
ruam, peradangan, rasa gatal, atau perubahan kulit lainnya. Penyakit kulit dapat
disebabkan oleh berbagai hal, termasuk faktor kebersihan diri, paparan zat berbahaya di
lingkungan, dan infeksi. Perkembangan penyakit kulit yang beragam saat ini, baik dalam
aplikasi bentuk, warna, dan tekstur/motif menimbulkan ide peneliti untuk menciptakan
suatu cara guna mempermudah pengenalan jenis penyakit kulit pada citra, salah satunya
melalui metode klasifikasi. Klasifikasi citra bermanfaat untuk mempercepat proses
pencarian citra penyakit kulit. Pada penelitian ini klasifikasi citra dilakukan
menggunakan Support Vector Machine (SVM). Support Vector Machine dapat
mengidentifikasi sekitar 60% ruam merah dan 30% ruam hitam pada kelainan kulit.
Meskipun demikian, penelitian menunjukkan masih terdapat ruang untuk pengembangan
algoritme yang lebih kompleks dan akurat.
References
Baker, M., & Fisher, R. (2023).
"Advanced
Image Retrieval
Systems in Medicine." Medical
Technology Innovation, 11(4),
234-246.
Bennett, K., & Green, M. (2022). "AI
Integration in Medical Image
Classification."
Journal
of
Healthcare Computing, 21(4),
478-490.
Brown, M., & Davis, K. (2023).
"Categorization
of
Skin
Conditions Using Digital Images."
Dermatology Informatics, 9(4),
178-190.
Cooper, S., & Reed, A. (2022). "Progress
in Medical Image Classification."
Healthcare Informatics Review,
28(2), 167-179.
Chen, X., et al. (2023). "Dataset
Construction for Skin Disease
Classification." Medical Image
Analysis, 28(4), 112-124.
Garcia, M., & Rodriguez, C. (2022).
"Color
Structure
Descriptor
Applications in Medical Imaging."
Pattern Recognition in Medicine,
20(4), 345-358.
Harris, B., & Clark, E. (2022). "Color
Variation Challenges in Skin
Disease Classification." Journal of
Medical Imaging, 17(4), 289-301.
Lee, J., & Kim, S. (2022). "Image
Preprocessing
Techniques
Medical
Image
in
Analysis."
Computer
Methods
in
Biomedicine, 18(1), 45-57.
Nguyen, H. T., et al. (2023). "Advanced
Machine Learning Approaches for
Dermatological Image Analysis."
International Journal of Computer
Assisted Radiology and Surgery,
18(3), 457-470.
Murphy, K., & Evans, L. (2023).
"Limitations of Current Image
Classification
Methods."
Healthcare Technology Review,
19(2), 112-124.
Park, S., & Lee, H. (2023). "Performance
Analysis
of
Classification
Skin
Disease
Systems."
Healthcare Computing, 16(3),
223-235.
Smith, A. B., & Johnson, R. (2022).
"Evaluation Methods for Skin
Disease Image Classification."
ournal
of
Medical
Image
Processing, 15(3), 234-245.
Taylor, R., & Moore, S. (2023). "Factors
Affecting
Medical
Classification."
Image
Medical
Computing Systems, 22(1), 78-90.
Thompson, E., & Anderson, P. (2023).
"Content-Based Image Retrieval in
Dermatology." Medical Image
Processing Review, 14(2), 67-79.
Wang, S., et al. (2022). "Automated Skin
Lesion
Classification
Using
Convolutional Neural Networks
and Support Vector Machines."
Computers
in
Biology
and
Medicine, 145, 105468.
Wang, L., & He, D. C. (2021).
"Classification of Skin Disease
Images Using Color Structure
Descriptor." IEEE Transactions on
Wilson, R., et al. (2022). "Visual
Analysis
of
Skin
Disease
Categories." Journal of Clinical
Dermatology,
25(3),
412
425.Engineering Journal, 30(2),
156-168.
Zhang, L., et al. (2020). "Deep Learning-
Based Skin Disease Classification:
A Comprehensive Review." IEEE
Transactions on Medical Imaging,
39(8), 2551-2563.
Zhang, Y., & Liu, H. (2021). "Online
Medical Image Catalogs: A
Systematic
Review."
Digital
Healthcare Journal, 12(2), 89-101.