IMPLEMENTASI METODE KLASIFIKASI NAÏVE BAYES PADA ANALISIS SENTIMEN ULASAN APLIKASI MOBILE LEGENDS DI GOOGLE PLAY STORE
Keywords:
Analisis Sentimen, Text Mining, Naïve Bayes, Mobile Legend, Google Play StoreAbstract
Penelitian ini menerapkan metode klasifikasi Naïve Bayes untuk menganalisis sentimen ulasan pengguna terhadap aplikasi Mobile Legends di Google Play Store. Data ulasan dikumpulkan melalui teknik web scraping, lalu dilabeli dan diproses melalui tahap preprocessing, termasuk case folding, penghapusan stopwords, tokenisasi, dan stemming. Data dibagi menjadi data pelatihan dan pengujian, kemudian fitur-fitur diekstraksi menggunakan metode TF-IDF. Hasil penelitian menunjukkan bahwa model Naïve Bayes mencapai tingkat akurasi sebesar 85% dalam mengklasifikasikan sentimen ulasan. Evaluasi melibatkan presisi, recall, dan F1-score. Temuan penelitian ini memberikan wawasan yang mendalam tentang pandangan pengguna terhadap Mobile Legends dan memiliki potensi aplikasi dalam pemantauan sentimen serta pengembangan aplikasi mobile dan analisis sentimen berbasis teks di berbagai domain.
References
Alamo, E., Benosa, J.-A., Fernandez, C., & Paderan, M. P. (2023). Linguistic Swearing of Mobile Legend Players: A Pragmatic Study. Journal of English Education and Linguistics, 4(1), 43–56.
Ardianto, R., Rivanie, T., Alkhalifi, Y., Nugraha, F. S., & Gata, W. (2020). Sentiment analysis on E-sports for education curriculum using naive Bayes and support vector machine. Jurnal Ilmu Komputer Dan Informasi, 13(2), 109–122.
Britto, L. F. S., & Pacifico, L. D. S. (2020). Evaluating Video Game Acceptance in Game Reviews using Sentiment Analysis Techniques. Proceedings of the SBGames, Virtual, 7–10.
Chan, A. S., Fachrizal, F., & Lubis, A. R. (2020). Outcome prediction using Naïve Bayes algorithm in the selection of role hero mobile legend. Journal of Physics: Conference Series, 1566(1), 12041. IOP Publishing.
Guzsvinecz, T., & Szűcs, J. (2023). Length and sentiment analysis of reviews about top-level video game genres on the steam platform. Computers in Human Behavior, 107955.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In Data Mining: Concepts and Techniques. https://doi.org/10.1016/C2009-0-61819-5
Kusnanda, D., & Permana, A. (2023). Implementation of Naive Bayes Classifier (NBC) for Sentiment Analysis on Twitter in Mobile Legends. International Journal of Science, Technology & Management, 4(5), 1132–1138.
Lasamahu, P. F. (2021). Analisis Sentimen Pengguna Game Online Mobile Legends dengan Naïve Bayes.
Musat, C. C., Ghasemi, A., & Faltings, B. (2012). Sentiment analysis using a novel human computation game. Proceedings of the 3rd Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources and Their Applications to NLP, (CONF), 1–9. Association for Computational Linguistics.
Narwal, R., & Aggarwal, H. (2022). Predicting online game-addicted behaviour with sentiment analysis using twitter data. Machine Learning, Advances in Computing, Renewable Energy and Communication: Proceedings of MARC 2020, 505–517. Springer.
Prasetya, M. O., & Ependi, U. (2022). Sentimen Analisis Hero Mobile Legends Dengan Algoritma Naive Bayes. Jurnal Mantik, 6(3), 3226–3234.
Punetha, N., & Jain, G. (2023). Bayesian game model based unsupervised sentiment analysis of product reviews. Expert Systems with Applications, 214, 119128.
Utami, M. A. A. T., Silvianti, P., & Masjkur, M. (2023). Algoritme Support Vector Machine untuk Analisis Sentimen Berbasis Aspek Ulasan Game Online Mobile Legends: Bang-Bang. Xplore: Journal of Statistics, 12(1), 63–77.